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The axially symmetric contact problem of the interaction of an inhomogeneous ageing viscoelastic 

cylindrical body with an arbitrary finite system of fitted rigid elements is considered. Account is taken of the 

fact that the collars are not fitted or removed at the same time, which is dictated, for example, by the 

particular features of the installation of engineering structures, as well as the properties of the age and 

structural inhomogeneities of the deforming body itself due to manufacturing processes or the erection of 

real objects. A formulation of the problem and its system of resolvent bidimensional integral equations are 

given. A solution of the system is constructed. A numerical analysis of a number of actual processes is 

carried out and the mechanisms of both the individual as well as the combined effect of the main factors on 

the characteristics of the contact interaction are investigated. 

1. FORMULATION AND RESOLVENT EQUATIONS OF THE CONTACT PROBLEM 

LET us investigate the process of the sequential fitting of rigid collars to a bilayer hollow cylinder, 
the layers of which are made out of different viscoelastic ageing materials at different instants of 

tPrikl. Mat. Mekh. Vol. 55, No. 6, pp. lOl&-1025, 1991. 
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FIG. 1. 

time [I, 21. We shall also take account of the possibility that some of the collars are removed. Let 
each ith collar be slipped onto a segment of the cylinder a,Qx< bi (i = 1,2, . . . , n) without friction. 
The tightness of the ith collar is 60, the profile of its internal surface is gi[z-- (ai + bi)/2], the instant 
when it is fitted is ~~ and the instant when it is removed is 7’. The external layer of the cylinder which 
is in immediate contact with the collars is manufactured at an instant of time rr* and has a thickness 
h. The internal layer is made at an instant of time rz* and its geometrical dimensions are 
characterized by the values of the radii a and b (a< b). It is assumed that bj - a % h, b S- h and, 
furthermore, that the compliance of the elements of the external, relatively thin layer and the 
elements of the internal layer of arbitrary thickness is of the same order or that the external layer is 
more compliant [3, 41. There is smooth contact between the layers. The internal surface of the 
bilayer cylinder is subjected to the action of a uniform pressure PO(t) [5] which is applied at an 
instant of time r. 3 max [7r*, Q*] (Fig. I), or a rigid insert, which creates conditions for a smooth 
and ideal contact to be set up in the cylinder from the very beginning. It is assumed that the distance 
between the collars and the ends of the cylinder is quite large and that the ends themselves are 
covered by rigid caps which eliminate their axial motion. 

Let us now consider the first version of the formulation of the problem when, during the fitting of 
the cylinder with rigid collars, a certain pressure PO(l), which varies with time, is applied to it. On 
the basis of [5], we obtain a system of two-dimensional integral equations which describes the 
successive installation (removal) of the rigid elements in the following form (also, see [2]): 

(1 - ~12) h (I- J+ (%r i)) qi (a,, O/&O (t) + 

(0: (t) = 0, (t), ai < 2 \< bf, i = 1, . . ., n) 
‘t? < t < q: qi (z, t) = 0, t&O = 0, elf (t) = 0, gf fz - (ai + b,)l2] = 0 

Eke (t) = & (t - rk*), ck* (t, ?t) = ck (t - Tk*, z - .Ek*), 

K*(k) (t, T) = K(k) (t - Sk*, T - zJc*) 
t t 

Lk (~9, t) cp (t) = 1 rp (z) Kkk) (4 z) dz, Ns @,,t t) 9 (t) = s cp (z) R, (t,. 7) &c 
8 t* 
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Ktk) (t,l r) = Ek (z) -$- c & + Ck (t,. r)] 
81 (i) = t&e (t), e (t) = rd& (t)lE,O (t) - d&l 

dr= 2 (1 - yl) (Zz + b)-l(l + Y&I - 2~2) b - aa@ (b’ - aP)-‘d,l 

4 = (1 + v&l [(b + h)-2 - bal(l + ~2) uaba (P - a”)--‘4 

dt = (1 - 2~5) (b + h)-ab + b-l, dd = (1 - 2~3 ba* + b-l 

Kt (t, T) = ld2K,,‘a’ (t, T) E,O (T)/J%~ (z) - d&o(l) (t, ~)le (t) 

L I(b - u)al = a~a’d,,~ - u”Alla - u-y s,-’ 

s1 = aor’ + boa-l + UoboA na - boa%A ala + (1.3) 

+ a%zbAoo~ - uObaSA los 

A if = Ii (au) Kj (ab) - (-l)r+Uj (ab) K( (au) 

where qi(z, t) are the contact stresses under the ith collar and Kck)(t, T), Ck(t, r), Ek(t) and Yk are 
the creep kernels, the measures of the creep, the instantaneous elastic moduli and the constant 
Poisson’s ratios, respectively, of the materials of the outer (k = 1) and inner (k = 2) layers, R3(t, T) 
is the resolvent of the kernel K3(t, r), H(t) is the Heaviside function and Z,(a), K,(a) (m = 0, 1) 
are Bessel functions of imaginary argument. The presence of an internal pressure in the cylinder is 
taken into account by the last term on the right-hand side of the system of equations (1.1). 

The systems of integral equations of a further two versions of the formulation of the problem 
(with a rigid insert) can be obtained by putting P,,(t) = 0 in (1.1) and taking the corresponding 
expressions for the kernel of the contact problem k(z, 5). The general form of formula (1.2) is 
preserved here but relationship (1.3) changes. So, in the case of a rigid insert? under conditions of 
smooth contact 

L[(b - a) ccl = cL4,,2s2-‘, sz = a%4 102 - boA,l2 - b-l 

and, under conditions of coupling 

L [(b - a) ccl = la-1 + 4 (1 - Yz) aL4,,A1, - aa2 @,,a - Al;)lS;’ 

SS = 8 (1 - 9) a (AoJll - AolAIo) + aboa (A,? - A$) + 
+ ubcc~ (A,,2 - A,o2) - 4 (1 - VZ) (ba2Ao&, + VA O~&) + 

+ 2 (I- vz) (1 - 2vJ a%-fb-l - (ub-’ + bdl) a 

We note that the properties of the kernels of the contact problems under consideration and of the 
kernels of planar contact problems [3, 61 are similar. In particular, L(CX)CX-’ >O (I a ( < ~0). With 
respect to the creep kernels Kck)(t, T), it is assumed that they are continuous or weakly singular. 

t V. A. Chernysh, The action of normal and tangential loads on single- and multi-layer hollow circular cylinders. Inst. 

Problem Mekhaniki Akad. Nauk SSSR, Moscow, 1988, 40 pp.; deposited in the All-Union Institute for Scientific and 

Technical Information (VINITI), No. 6784-B88,31.08.88. 
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2. SOLUTION OF THE PRINCIPAL SYSTEM OF EQUATIONS 

Let us make a change of variables in the system of equations (1.1) in accordance with the formulas 

‘* = (2z - Ui - b,)l(bi - Ui) (Ui \< 2 \< bi) 

t* = (2E - Ui - bi)l(bi - Ui) (Ui < E < bi) 

t* = Q-1, Z* = q-1, q* z qq-1, [q"]* xzz rioq-l 

[$*I* = Q*q- (k = 1, 2), To* = lTocl-l, u = (b - a) a 

2(b--a) =A 
a.+bj _ I bj- aj _ 

bl-al ’ bl - al - qi7 bl-al --5i 

kij(z*,E*)_ vifj k( siz’+qi~5j1’-?, )_ ‘F k(;-s) 
-a 

k (2) = k” (z, EJ, k(s) = 7 L;’ -COSSUdU, 1* = I 
; 

q’ (z*, t*) = 2qi (z, t) (1 - ~2) nilEz” (t), gi (z*) = 2gi [z - 

- (@i $- bi)l2]l/i (b, - al)-’ 

P: (t*) = 2P. (t) (1 - ~2~) I/&/E,” (t), 8,i (t*) = Oli (t) (1 - 
- $)-1 (b, - up 

c (t*) = (1 - v12) Ez” (t) h I(1 - vZ2) El0 (b, - u,)l-l, R,* (t*, z*) = 

= Rs (c 4 ~1 

K, (t*, z*) = K,,(l) (t, T) zl, K1 (t*, z*) = (E,” (t)lE,” ($1 x (2.1) 

x K,,(l) (t, z) zl [E,” (z)lEz” (t)l 

Kz (t*, z*) = KO@) (t, 2) Tl, I9 = 26: Jr& (b, - al)-’ 

L,* (s, t) f(t) = j f (7) K,(t, T) ch (m = 0, 1,2) N* (s, t) f (t) = 
s 

= s f (T) R,* (t, t) dx- 
s 

fi cz*, t*) = iTi - gi (z*) + H (t* - to*) (I* - Lo* (To*, t*)) x 

x (I* + N* (q,*, t*)) 8oi (t*) (I* - Lz* (To*, t*)) P”i (F), ( z* 1 < 1, 

Ig* I\<1 

and, on omitting the asterisks in the notation for all of the quantities apart from the operators, we 

shall have the following system of equations: 

c (a (I* - L,* (Tl, t)) qi (z, t) + (I* - L,* (1, t)) a Aij*Q’ (2, t) = f’(Z, t) 
j=1 (2.2) 

Aij*U(z)=i ki (Z,E)L'(E)dg 
-1 

TiO <., t ( zi: qi (z, t) = 0, f’ (z, t) = 0 
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Relationships (2.2) specify the stepwise process for solving contact problems in the case of 
cylindrical bodies and, at each step, can be reduced to a single operator equation in a functional 
vector space (summation is carried out over repeated superscripts and they run over all integral 
values from 1 to n) [2,7]: 

c (t) (I* - L,*) q (z, t) + (I* -I+*) A*q (z, t) = x (2, t) 

(I z I < 1, t E 1% %+J) 

Lk* = Lk* (z?, t) (k = 1, 2), q (z, t) = qi (2, t) ii 

x (z, t) = xi (z, t) ii,, A*a (z) = (K (z, E), a (5)) = 

1 

= sl K (z, E)-a (f,) dk - i k’j (z, E) a’ (E) i”dE 

K (z, E) = k’j (z, E) iii’, K (z, E) 1 KT (E, z), a (E) = ai (E) ii 

(2.3) 

where q(z, t) is a vector function of the contact pressures which is continuous with respect to t with 
values from L2([-1, 11, V) ((&[-1, 11, V) is a Hilbert space of vector functions, the components 
of which have integrable squares in the interval [-1, 11, K(r, 5) EL&-l, 11, V) where 
L2 ([ - 1 , 11, V) is a Hilbert space of tensor functions of two variables, the components of which are 
integrable together with their squares in the square (1 z] d 1, 15 1 S 0}), ik is an orthonormalized 
algebraic vector basis of an n-dimensional Euclidean space V and x (z, t) is a vector function which is 
continuous with respect to t and takes account of the tension of the collars, profile of their internal 
surface, the effect of the pressure which is imposed and, also, the distortion of the cylinder due to 
the creep of the material (the structure x(z, t) will be considered in greater detail below using an 
actual example). 

It may be asserted on the basis of [2] that the operator A* is completely continuous and 
self-adjoint from L2([-1, 11, V) into L2([-1, 11, V). The positive definiteness of A* can be 
established on the basis of the definition of the positive definiteness of an operator taking account of 
the fact that L(u) u-l > 0 (I u I< 0~)) and the fact that a function with a Fourier transform which is 
equal to zero is equal to zero almost everywhere [S]. 

In constructing the solution of Eq (2.3), we shall make use of the following expansions: 

q (Z, t) = ii 6$ (t) (pi(Z)? x (z9 t) z ii xi (t) Cpi tz) (2.4) 

where vi(z) are orthonormalized characteristic vector functions of the operator A* which 
correspond to its characteristic numbers ai, that is, 

A*qi (z) = atqi (z) (t = 0, 1, a - s) (2.5) 

On substituting series (2.4) into (2.3) and taking account of the spectral relationship (2.5), after 
some reduction we shall have 

Oi (t) = (I* f Ni*) S& (t), S& (t) = Xi (t) [ai” + c (t)I-‘i (2.6) 
t 
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where RkO(t, T) is the resolvent of the kernel 

KkO (t, 7) = [c (t) K1 (t, z) + airoK, (tc q1 [c (q + cckT1 

We will now dwell on the algorithm for constructing the characteristic numbers and vector 
functions of the operator A *. We will represent the kernel of the operator A* and the characteristic 
vector functions in the form [2] 

R (2, E) = j+ 4 r%& (4 pn’ (E) 
(2.7) 

‘pp (2) = Ri%o a: (p,Pi (4 (P = 0Y.k * - .) 

(Prf (2)~ Pni (2)) = 6ij8fin* Pk* (2) = Pk* (2) ii 

where pkr(z) (k = 0, 1, . . .) is a basis for L2([-1, 11, V), S,,, is the Kronecker delta and Pk* (z) is a 
certain basis for LZ[-1, 11. 

On substituting (2.7) into (2.9, we get the following system of algebraic equations for 
determining the characteristic numbers of the operator A* and the coefficients of the expansions of 
its eigenfunctions in a series in the basis L2([-1, 11, V): 

2 r$d(,)=a/&(,) (m=O ,..., i=l,... n) (2.8) 

We merely note here that the matrix system (2.8) is symmetric since it follows from the fact that 
K(z, E_) = KT(& z) that r,,‘j = rnmji and the formula holds for all r,,,,ii (the system of orthonormal- 
ized Legendre polynomials is selected by the basis L2 [ - 1, 11): 

iJ 
r,, = I 

(- q~m++wa Rg, (m and n are even: 1= 0; 
m and n are odd: I= 2) 

(_ i)(m+n-tNs&, (m is even, n is odd: k = 1; 

t m is odd, n is even: k = 1). 

fQJn = 5 ij 
fmn (U) 03s [(qr - 71) uhvl]Id& f&in = 1 /$I (U) X 

0 0 

X sin [(Q -Q) uh-l] du 

fiIa = [(2?7& + 1) (2n + 1)lwbL (u) u-%+*,* (&A-‘) x 

x Jn+l/, (C&3 

Let us now consider the actual process of the successive strengthening of a two-layer cylinder with 
a system of rigid collars. We shall assume that the instants when any two collars are installed on the 
system are different, that is, the first collar is put on, then the second and so on. In a time interval 
~E[T,,T~], we shall have Eq. (2.3), where i=j= 1, x(z,~) =f’(z,t)i’. In fact, we obtain a single 
integral equation with a known right-hand side. After the fitting of the second collar, the operator 
equation (2.3) will already be equivalent to a system of two equations (i = j = 1, 2; r = 2) and its 
right-hand side will contain information on the state of stress and strain of the body obtained in the 
preceding step 
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x1 (2, 1) = f’ (2, t) + c (1) JJ,*’ (Q? Q) q’ (2, t) + 
+ La*' (zl, .x1) Ali*ql(“’ t, 

xa (2, t) = $ (2, ‘t) + L,*’ (~1, 4 b*q’ (2, t) 

L:' (q, TJ w (t) = 5 w (T) & (6 z) d7 (Z=1,2) 
71 

where, following after fi (z, t) (i = 1, 2), the terms determine the distortion of the surface of the 
cylinder due to the creep of its material. Fitting of a third collar leads to the need to investigate the 
operator equation, which is equivalent to a system of three two-dimensional integral equations and 
so on. 

In the case when all of the elements of the deformed material are made out of a single material 
(L, = L2 = L, u1 = u2 = Y, Er = E2 = E at the same instant of time (7i* = TV*) and all of the collars 
are fitted simultaneously [see (l.l)], the following assertions can be made: 

(1) in a problem concerning the action of a uniform pressure on the internal surface of the 
cylinder subject to the condition that the tension of all of the collars is equal to zero and that the 
profiles of the internal surfaces are described by functions which are identically equal to zero, creep 
has no effect on the stressed state of the body and it is identical to the elastic state; 

(2) in contact problems with a rigid insert, the solution can be obtained using the solution of the 
instantaneous elastic problem on which it is necessary to act with the operator E (t)(I + N) E-‘(t), 
where (I+N) = (I-L)-‘. 

3. EXAMPLES 

Let us consider a two-layer high pressure tube, the layers of which are made at different instants of time from 
concrete with constant elastic characteristics E and v and a measure of creep in the form [9] 

c (t, T) = (C, + .4e-8’) (1 - ,-r(t-r)) (3.1) 

Let us put CoE = 0.552, AE = 4, v = 0.1, 6 = 0.031 day-‘, y = 0.06 day-’ [5] and, in accordance with the 
change of variables (2.1), the following values of the parameters are specified: 

i& - or) = 0,15, b/(b, - ai) = 5, a/b = O,B, c (t) = 0,15 

8,’ (t) = 15,66, P,’ (t) = I/z, g’ (I) = 0, 6’ = 0 

6, = i, q1 = 0, q, = 8, qs = 16 (i = I, 2, 3) 

that is, collars of the same width with planar profiles of the internal surface are fitted onto the tube without 
tension at one and the same distance from one another, which is equal to three times the width of the collars. 

We shall assume that the internal layer of the cylinder is made at zero instant of time while the outer layer is 
made 50 days later. The pressure is applied for a further 15 days and the first collar is simultaneously fitted. The 
second and third reinforcing collars are fitted 13 and 39 days after the first, respectively. For the specified 
process of the fitting of the cylinder with collars, the dimensionless characteristics of the decisive time 
parameters take the values 7. = ?1 = 1, 72 = 1.2, 72 = 1.6, TV* = 0.77 and 72* = 0. 

In the graphs presented below, we denote the distribution of the contact stresses at the instant of the fitting of 
a successive collar by the solid lines and the same distributions immediately prior to the fitting of the next collar 
by broken lines. We also show the changes in the integral characteristics 
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a 

Fro. 3 

I, (t) = 5 q’(z, t) dz 

-1 

and label the curves in the graphs for the first, second and third collars by the open circles, solid circles and 
small crosses, respectively. 

The above-mentioned distributions of the contact stresses under one (a), two (b) and three (c) collars are 
shown in Fig. 2. The dashed line curves in Fig. 2(c) correspond to the limiting distributions when t-+ m. Here, 
we merely note the principal difference between these distributions of the contact stresses and the distributions 
which arise when all the collars are fitted simultaneously (the latter are not shown on account of constraints on 
the volume of graphical material), particularly under the central collar. 

The curves for the change in the integral characteristics of the contact stresses with time (Fig. 3) enable one 
to make a judgement regarding the intensity of the relaxation processes. 

We will now consider a further example. Let us assume that the internal layer of the tube is made out of steel 
with a Young’s modulus E2 and a Poisson’s ratio v2. This is covered by a layer of viscoelastic ageing 
polyvinylchloride [lo] with elastic characteristics El and ur and a creep measure in the form of (3.1). On the 
basis of the experimental data for polyvinylchloride [lo] and the standard characteristics of steel, we have 

CoE, = 0.181, AE, = 0.488. v1 = 0.354,v,.= 0.3 

fl = 0.012 day-‘, y = 0,315 day-‘, El&-l = 0.016 

Let US take the following values for the dimensionless quantities: 

h/(5, - 4J - 0.05, b/(b, - al) = 5, a/b = 0,8 

c (t) = 2.81, tloi = 24.48, Poi (t) = I/c;, gi (2) = 0 

cd= 1,911’ 0, ‘In:= 4, qJ = 8 (i = 1, 2, 3) 

that is, unlike the example which was considered earlier, the distance between the collars contracts by a factor 
of three and their tension is as yet undetermined. 

We shall assume that the outer layer is made at the zero instant of time. Fifteen days after the 
commencement of the measurement of time on the steel cylinder coated with the polymer, the first collar is 
fitted and the pressure applied. The second and third collars are fitted after 3 and 9 days. Hence, the 
dimensionless characteristics of the time parameters take their ealier values (Q* is not determined since the 
internal layer is elastic). In order to identify the curves in the graphs we shall use the notation from the previous 
example. 
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FIG. 4. FIG. 5. 

The stress distributions under the first collar, which was fitted without tension (6l = 0) and at an instant of 
time 71 = 7,, = 1, are shown in Fig. 4(a). It is seen that the process in which the stresses are relaxed for a 
selected structurally inhomogeneous tube shows up appreciably immediately after the fitting of the first collar. 
Calculations showed that, in the case when all of the collars were fitted without tension at selected instants of 
time and with a specified distance between them, separation of the layers occurs under the second collar at the 
instant when the third collar is fitted. Tension has therefore been given to the second collar. 

The stress distributions under the two collars are shown in Fig. 4(b) for 72 = 1, 2 and 6’ = 7.1. 
When the third collar was fitted at the instant 73 = 1.6, its tension was chosen such that the integral stress 

characteristics under the three collars would be close to one another. This tension turned out to negative, that 
is, ?i3 = -3.8. The commentaries to Fig. 4(c) and Fig. 5 are quite obvious. 

In conclusion, it is necessary to point out that the process of the successive fitting of collars on a viscoelastic 
cylinder leads to qualitatively new phenomena in the behaviour of the characteristics of the contact interaction 
which do not show up when a system of reinforcing elements is joined to a body at the same time. 

5. 

6. 

7. 

8. 

9. 
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